Stereoselective Syntheses of the 14-Hydroxy Epimers of Amphotericin B Methyl Ester

Benjamin J. Costello, Michael J. Driver, William S. MacLachlan* and Andrew W. Taylor SmithKline Beecham Pharmaceuticals, Great Burgh, Yew Tree Bottom Road, Epsom, Surrey KT18 5XQ, UK

(14R)-Hydroxyamphotericin B methyl ester 8 and its (14S)-epimer 12 have been obtained by way of m-CPBA oxidation of the enol ethers 5 and 6 respectively.

The polyene macrolide antibiotic ${ }^{1}$ amphotericin B $\mathbf{1}$ is widely used to combat severe systemic fungal infections. ${ }^{2}$ Amphotericin B was first isolated from Streptomyces nodusus ${ }^{3}$ and its structure has been determined by X-ray crystallography. ${ }^{4}$ Previous chemical manipulation includes its partial ${ }^{5}$ and total ${ }^{6}$ synthesis, selective degradation, ${ }^{7}$ functionalisation at $\mathrm{C}-16,{ }^{8,9}$ and derivatisation of its amino function. ${ }^{10}$ Following our identification of the dehydration at $\mathrm{C}-13,14$ of N -acetylamphotericin B methyl ester $2,{ }^{11}$ we now describe two synthetic sequences (Scheme 1) which yield ($14 R$)-hydroxyamphotericin B methyl ester 8 and its (14S)-epimer $12 . \dagger$ These stereoselective hydroxylations are the first reported substitution at C-14 of amphotericin B.
N-(Fmoc)amphotericin B methyl ester 3 was dehydrated by way of the silylated intermediate 4 to give the 13,14-anhydro derivative $5 \ddagger$ using our published methodology. ${ }^{11}$ Treatment of this ester 5 with m-CPBA in THF- $\mathrm{H}_{2} \mathrm{O}$ resulted in the chemoand stereo-selective dihydroxylation of the enol ether, in preference to the conjugated heptaene system, affording the ($14 R$)-hydroxy derivative 7 in 54% yield (after column chromatography). It is postulated that the initial attack of the electrophilic peracid at C -14 is directed by the hydroxy group at C -15, yielding the ($14 R$)-epimer as the sole product. In contrast, the pertriethylsilyl derivative 6 obtained by silylation of the anhydro ester 5 , gave solely the (145)-hydroxy derivative 10 in 50% yield (after column chromatography) when treated with m CPBA in hexane.§ Presumably blocking the directing effect of the C-15 hydroxy group by silylation results in attack on the enol ether from the less hindered β-face.

The novel hydroxylated derivatives 7 and 10 were con-
\dagger Stereochemical assignments were made by correlation with 2D NMR of the corresponding 13-O-methyl acetals 9 and 13 .
\ddagger Compounds 5-13 were characterised by ${ }^{13} \mathrm{C}$ NMR, ${ }^{1} \mathrm{H}$ NMR, IR, UV and FAB MS.
§ In hexane the peroxyacid adds across the enol ether ${ }^{12}$ introducing the ($14 S$)-hydroxy substituent and the axial ${ }^{7 b} 3$-chlorobenzoyloxy group at the anomeric centre. ${ }^{13}$
T/ The stereochemistry at $\mathrm{C}-13$ is evident ${ }^{14}$ from the large trans diaxial vicinal coupling obtained (${ }^{3} J_{14-\mathrm{H}, 13-\mathrm{F}}=23.3 \mathrm{~Hz}$) from the ${ }^{1} \mathrm{H}$ NMR spectrum of 11: δ_{H} [400 $\mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N} / \mathrm{CD}_{3} \mathrm{OD}, 1: 1$; $\left.\mathrm{Me}_{4} \mathrm{Si}\right] 7.84(2 \mathrm{H}, \mathrm{d}, J 7.5, \mathrm{ArH}), 7.71(2 \mathrm{H}, \mathrm{t}, J 7.8, \mathrm{ArH}), 7.42$ (2 $\mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 7.30(2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{ArH}), 6.62-6.33(12 \mathrm{H}$, complex, olefinic), $6.27(1 \mathrm{H}, \mathrm{dd}, J 15.4,8.3,20-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{m}, 37-\mathrm{H}), 5.53$ (1 H, dd, $J 14.0,9.8,33-\mathrm{H}$), 4.77-4.75 (3 H, complex, 1'-H, 17-H, 19$\mathrm{H}), 4.55(1 \mathrm{H}, \mathrm{m}, 11-\mathrm{H}), 4.51-4.46(1 \mathrm{H}$, complex, $3-\mathrm{H}), 4.48(1 \mathrm{H}, \mathrm{t}$, J 9.7, $15-\mathrm{H}), 4.37\left(2 \mathrm{H}, \mathrm{d}, J 9.7, \mathrm{NHCO}_{2} \mathrm{CH}_{2}\right), 4.24-4.21(2 \mathrm{H}$, complex, $2^{\prime}-\mathrm{H}, \mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}$), 4.04 (1 H, dd, J $10.2,2.9,3^{\prime}-\mathrm{H}$), $3.98(1 \mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.89(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.77$ $\left(1 \mathrm{H}, \mathrm{t}, J 9.9,4^{\prime}-\mathrm{H}\right), 3.58(1 \mathrm{H}$, dd, $J 23.3,9.4,14-\mathrm{H}), 3.57(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}\right), 3.45(1 \mathrm{H}, \mathrm{m}, 8-\mathrm{H}), 3.40(1 \mathrm{H}, \mathrm{m}, 35-\mathrm{H}), 2.91(1 \mathrm{H}, \mathrm{t}, J 10.8$, $16-\mathrm{H}), 2.59-2.45$ (3 H , complex), 2.35 ($1 \mathrm{H}, \mathrm{dd}, J 16.8,2.9,2-\mathrm{H}$), 2.27 ($1 \mathrm{H}, \mathrm{m}, 18-\mathrm{H}$), 2.13-1.92 (5 H , complex), 1.79-1.51 (6 H , complex), $1.48\left(3 \mathrm{H}, \mathrm{d}, J 6.1,6^{\prime}-\mathrm{CH}_{3}\right), 1.35\left(3 \mathrm{H}, \mathrm{d}, J 6.4,38 \mathrm{CH}_{3}\right), 1.24(3 \mathrm{H}$, d, $\left.J 6.4,40-\mathrm{CH}_{3}\right)$ and $1.16\left(3 \mathrm{H}, \mathrm{d}, J 7.2,39-\mathrm{CH}_{3}\right)$.
verted into their corresponding amphotericin \mathbf{B} methyl ester analogues. Treatment of 7 with piperidine ${ }^{8}$ in $\mathrm{DMSO}-\mathrm{MeOH}$ liberated the amine function to give the ($14 R$)-hydroxyamphotericin B methyl ester $8(80 \%)$. Desilylation of 10 with HF-pyridine in THF-pyridine resulted in concomitant cleavage of the anomeric benzoyl group to give the fluoride 11 (32%). $\|$ Hydrolysis of the fluoride 11 (CSA-THF- $\mathrm{H}_{2} \mathrm{O}$) followed by regeneration of the amino group with piperidine in DMSO-MeOH gave ($14 S$)-hydroxyamphotericin B methyl ester 12 (87%).

Experimental

(14R)-N-(9-Fluorenylmethoxycarbonyl)-14-hydroxyamphotericin B Methyl Ester 7.-To a solution of the polyene $5(0.372 \mathrm{~g}$, $0.37 \mathrm{mmol})$ in $\mathrm{THF}-\mathrm{H}_{2} \mathrm{O}\left(6: 1 ; 3 \mathrm{~cm}^{3}\right)$, at $0^{\circ} \mathrm{C}$ was added solid m-CPBA ($0.067 \mathrm{~g}, 0.39 \mathrm{mmol}$). The coolant was removed and the reaction mixture was stirred at room temperature for 1 h and then diluted with ethyl acetate. The organic solution was washed sequentially with aqueous sodium metabisulfite, aqueous sodium hydrogen carbonate and water, dried $\left(\mathbf{M g S O}_{4}\right)$ and evaporated. The residue was purified by flash column chromatography on silica gel with the separated lower phase of chloroform-methanol-ammonium hydroxide (d 0.88) (5:1:1) mixture as eluent to give the polyene $7(0.207 \mathrm{~g}, 54 \%)$ as a yellow amorphous solid; $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3427,3013,2972,2934$, $1717,1636,1514,1450,1376,1323,1190,1071,1010,905,882$, 848, 760, 742, 651 and 540; $\lambda_{\max }(\mathrm{MeOH}) / \mathrm{nm} 405,382,363$ and 344; $\delta_{\mathrm{H}}\left[400 \mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}-\mathrm{CD}_{3} \mathrm{OD}, 1: 1 ; \mathrm{Me}_{4} \mathrm{Si}\right] 7.84(2 \mathrm{H}$, $\mathrm{d}, J 7.5, \mathrm{ArH}), 7.71(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.41(2 \mathrm{H}, \mathrm{t}, J 7.4, \mathrm{ArH}), 7.30(2$ $\mathrm{H}, \mathrm{t}, J 7.3, \mathrm{ArH}), 6.66-6.32$ (13 H , complex, olefinic), $5.63(1 \mathrm{H}$, $\mathrm{m}, 37-\mathrm{H}), 5.49(1 \mathrm{H}, \mathrm{dd}, J 14.7,10.2,33-\mathrm{H}), 4.88(1 \mathrm{H}, \mathrm{m}, 17-\mathrm{H})$, 4.77-4.67 (4 H, complex, 1'-H, 11-H, 15-H, 19-H), $4.46(1 \mathrm{H}, \mathrm{m}$, 3-H), $4.37\left(2 \mathrm{H}, \mathrm{m}, \mathrm{NHCO}_{2} \mathrm{CH}_{2}\right), 4.24-4.20(2 \mathrm{H}$, complex, $\left.\mathrm{NHCO}_{2} \mathrm{CH}_{2} \mathrm{CH}, 2^{\prime}-\mathrm{H}\right), 4.07\left(1 \mathrm{H}, \mathrm{dd}, J 10.1,2.6,3^{\prime}-\mathrm{H}\right), 3.95$ (1 $\mathrm{H}, \mathrm{m}, 5-\mathrm{H}), 3.87(1 \mathrm{H}, \mathrm{d}, J 2.8,14-\mathrm{H}), 3.85(1 \mathrm{H}$, complex, $9-\mathrm{H})$, $3.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.77\left(1 \mathrm{H}, \mathrm{t}, J 9.9,4^{\prime}-\mathrm{H}\right), 3.59\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\right.$ H), 3.47-3.36 (2 H , complex, $8-\mathrm{H}, 35-\mathrm{H}), 3.14(1 \mathrm{H}, \mathrm{t}, J 10.8,16-$ H), $2.56(1 \mathrm{H}$, complex $), 2.49(1 \mathrm{H}, \mathrm{dd}, J 16.9,9.7,2-\mathrm{H}), 2.40-2.27$ (3 H , complex), 2.13-1.92 (4 H , complex), 1.81-1.45 (7 H , complex), $1.49\left(3 \mathrm{H}, \mathrm{d}, J 5.8,6^{\prime}-\mathrm{CH}_{3}\right), 1.35(3 \mathrm{H}, \mathrm{d}, J 6.4,38-$ $\left.\mathrm{CH}_{3}\right), 1.24\left(3 \mathrm{H}, \mathrm{d}, J 6.4,40-\mathrm{CH}_{3}\right)$ and $1.17(3 \mathrm{H}, \mathrm{d}, J 7.1,39-$ CH_{3}) ; $\delta_{\mathrm{c}}\left[100.6 \mathrm{MHz} ; \mathrm{C}_{5} \mathrm{D}_{5} \mathrm{~N}-\mathrm{CD}_{3} \mathrm{OD}, 1: 1 ; \mathrm{Me}_{4} \mathrm{Si}\right] 174.8$, 172.3, 158.1, 145.1, 145.0, 142.1, 137.5, 134.9, 134.8, 134.3, 134.2, $133.9,133.8,133.7,133.6,133.5,133.0,130.5,128.5,127.9,126.14$, $126.10,120.7,100.4,98.7,79.1,77.1,76.4,75.3,75.0,72.8,72.3$, $71.8,71.4,70.5,70.3,69.3,68.7,67.4,66.6,58.5,52.3,52.2,48.2$, $44.9,44.0,43.3,42.9,41.3,41.1,38.5,36.4,31.6,19.1,18.6,17.3$ and 12.6; m/z (FAB-thiodiethanol, sodium matrix) 1199 $\left(\mathrm{MNa}^{+}\right)$.

Acknowledgements

We thank Dr D. F. Corbett for his encouragement during this work and DrS. A. Readshaw for 2 D NMR assignments.

$2 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Ac}$
HO NHR^{2}
$3 \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Fmoc}$

Scheme 1 Reagents and conditions: i, $\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ (13 equiv.), 2,6-lutidine (16 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0-25^{\circ} \mathrm{C}, 1 \mathrm{~h}$; ii, HF -pyridine (80 equiv.), THF, pyridine, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 46 \%$ from 3; iii, $\mathrm{Et}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ (13 equiv.), 2, 6-lutidine (18 equiv.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} 0.5 \mathrm{~h}, 25^{\circ} \mathrm{C} 20 \mathrm{~h}, 61 \%$; iv, m - CPBA (1.2 equiv.), THF, $\mathrm{H}_{2} \mathrm{O}, 0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 54 \%$; v, m-CPBA (1.2 equiv.), hexane, $0-25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 50 \%$; vi, piperidine (2 equiv.), DMSO, MeOH, $2 \mathrm{~h}, 80 \%$; vii, HF-pyridine (80 equiv.), THF, pyridine, $25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 32 \%$; viii, CSA (1 equiv.), THF, $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}$; ix, piperidine (2 equiv.); DMSO, $\mathrm{MeOH}, 3 \mathrm{~h}, 87 \%$.
Abbreviations used here and in text: THF = tetrahydrofuran, Fmoc = fluoren-9-ylmethoxycarbonyl, TMS $=$ trimethylsilyl, TES $=$ triethylsilyl, DMSO $=$ dimethyl sulfoxide, $m-\mathrm{CPBA}=m$-chloroperbenzoic acid, $\mathrm{CSA}=$ camphor- 10 -sulfonic acid.

References

1 Macrolide Antibiotics, Chemistry, Biology and Practice, ed. S. Omura, Academic Press, New York, 1984.
2 G. A. Sarosi, Postgrad. Med., 1990, 88, 151.
3 J. Vandeputte, J. L. Wachtel and E. T. Stiller, Antibiot. Annu., 1956, 587.

4 W. Mechlinski, C. P. Schaffner, P. Ganis and G. Avitable, Tetrahedron Lett., 1970, 3873.
5 R. M. Kennedy, A. Abiko, T. Takemasa, H. Okumoto and S. Masamune, Tetrahedron Lett., 1988, 451.
6 (a) K. C. Nicolaou, R. A. Daines, J. Uenishi, W. S. Li, D. P. Papahatjis and T. K. Chakraborty, J. Am. Chem. Soc., 1988, 110, 4672; (b) K. C. Nicolaou, R. A. Daines, T. K. Chakraborty and Y. Ogawa, J. Am. Chem. Soc., 1988, 110, 4685; (c) K. C. Nicolaou, R. A. Daines, Y. Ogawa and T. K. Chakraborty, J. Am. Chem. Soc., 1988, 110, 4696.
7 (a) K. C. Nicolaou, T. K. Chakraborty, Y. Ogawa, R. A. Daines, N. S. Simpkins and G. T. Furst, J. Am. Chem. Soc., 1988, 110, 4660; (b) R. M. Kennedy, A. Abiko and S. Masamune, Tetrahedron Lett., 1988, 447.
8 M. J. Driver, A. R. Greenlees, W. S. MacLachlan, D. T. MacPherson and A. W. Taylor, Tetrahedron Lett., 1992, 4357.

9 (a) M. J. Driver, A. R. Greenlees and D. T. MacPherson, J. Chem. Soc. Perkin Trans. 1, 1992, 3155; (b) T. Burzzese, M. Cambieri and F. Recusari, J. Pharm. Sci., 1975, 64, 462. (c) A. Jarzebski, L. Falkowski and E. Borowski, J. Antibiot., 1982, 35, 220; (d) A. Czerwiñski, T. Zieniawa and E. Borowski, J. Antibiot., 1990, 43, 680.
10 (a) M. Chéron, B. Cybulska, J. Mazerski, J. Grzybowska, A. Czerwiñski and E. Borowski, Biochem. Pharmacol., 1988, 37, 827; (b) A. Czerwiñski, W. A. König, T. Zieniawa, P. Sowiñski, V. Sinnwell, S. Milewski and E. Borowski, J. Antibiot., 1991, 44, 979.
11 M. J. Driver, W. S. MacLachlan, D. T. MacPherson and S. A. Readshaw, J. Chem. Soc., Chem. Commun., 1990, 636.
12 B. F. Coles, J. R. Lindsay Smith and R. C. Garner, J. Chem. Soc., Perkin Trans. I, 1979, 2664.
13 D. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford, 1983.
14 G. H. Klemm, R. J. Kaufman and R. S. Sidhu, Tetrahedron Lett., 1982, 2927.

Paper 3/03272H
Received 8th June 1993
Accepted 22nd June 1993

